viernes, 19 de septiembre de 2008

JAVIER ERNESTO MENDOZA


ESTUDIANTE DE TECNICA INDUSTRIAL CON ORIENTACION EN METAL-MECANICA
Tel. 9805-4895

7 comentarios:

RENAN AVILA dijo...

Javier le mandé a la biblioteca para que haga el tabajo que le asigné y hasta el momento no veo ninguna. Trate de trabajar, de lo contrario tendrá problemas con su nota .

JAVIER ERNESTO dijo...

horesumen de materiales y
sus propiedaes
la ciencia de materiales implica investigacion la relacion entre la estructura y las propiedades de los materiales.
en los materiales se estudia sus propiedades quimicas y macroscopicas de los materiales,
incluye elementos quimicos y fisicos,historicamente la evolucion de las sociedadeshan puesto que la capacidad para producir mas materiales pra satisfacer sus necesidades, las civilizaciones anteriores tenian un nombre que era (edad de piedra y edad de bronce )
y ahora el hombre tiene mayor acceso de materiales superiores alas naturales.
quiza uno de los cientificos mas relevantes en el campo fue:
WILLARD GIBBS, al mostrar la relacion de las propiedades del material y su estructra,
se han desarrollado varios materiales parala sociedad como:
metales,plasticos,vidrios y fibras.
la ciencia de materiales clasifico a todos los materiales en funcion de sus propiedades y su estructura atomica y son las siguientes
1 metales
2 ceramicos
3 polimeros
4 materiales compuestos
5 semiconductores

RENAN AVILA dijo...

Trate de trabajar todos los dias, ya que tiene acumulado varios trabajos y si no se entregan en la fecha indicada no tienen valor.

RENAN AVILA dijo...

En el trabajo de materiales y sus propiedades debió de hacer un comentario mas profundo, tambien consultar sobre el tema, su nota es de 4/10.- En el ensayo de la chispa solo presenta dibujos de las chispas por lo tanto su nota es de 8/20, en el de metalografía, líquidos y rayos x 0/10.- Si no trabaja tendrá problemas al final de la clase.

JAVIER ERNESTO dijo...

INTRODUCCION


El siguiente informe se trata sobre el montaje de una probeta como se prepara, los pasos que hacemos para desarrollarla y una breve información sobre ella.



OBJETIVOS

• Saber como hacer el montaje de una probeta.



RECURSOS

• Liquido acrílico
• Acrílico en polvo
• Varia de hierro
• Tuvo pvc
• Becker
• Esmeril
• Lima


Descripción del ensayo

• Cortamos una varia de hierro de 1 ´pulg
• Cortamos tubo pvc de 1 pulg
• Mezclamos el acrílico liquido y en polvo en un Becker
• Lo introducimos en la probeta con la varia al centro de ella
• Dejamos que se secara
• Aplicamos vaselina en la varia de hierro para que no oxide





CONCLUSIONES


• Aprendi como se hace el montaje de una probeta
• Que el liquido acrílico seca rápido


RECOMENDACIONES



• Cortar bien la varia y el tubo para que quede al mismo nivel
• Aplicar bien la mezcla para que no derrame




BIBLIOGRAFIA

JAVIER ERNESTO dijo...

Metalografía microscópica

La metalografía microscópica estudia las características estructurales y de constitución de los productos metalúrgicos con la ayuda del microscopio metalográfico, para relacionarlos con sus propiedades físicas y mecánicas. La parte más importante de la metalografía es el examen microscópico de una probeta pulida y atacada empleando aumentos que con el microscopio óptico oscilan entre 100 y 2000X.


El análisis metalográfico comprende las siguientes etapas:

1. Selección de la muestra.
2. Toma o corte de la muestra.
3. Montaje y preparación de la muestra.
4. Ataque de la muestra.
5. Análisis microscópico.
6. Obtención de microfotografías o video grabaciones.

El corte de la probeta puede realizarse con seguetas, cortadora de cinta o disco abrasivo, teniendo la precaución de evitar el calentamiento que puede ocasionar alteraciones estructurales, por lo tanto no es conveniente realizar el corte de la muestra con soplete oxiacetilénico.

Un caso extremo es el corte de probetas de plomo, que debe realizarse con sierras-cintas para evitar el empaste de los dientes de la segueta y el calentamiento excesivo.

Algunos de los reactivos de ataque son los siguientes:
Acido pícrico (picral)
4 g. de ácido pícrico cristalizado,
100 cm3, de alcohol etílico al 95%
Utilizable con todos los aceros aleados, aceros especiales y fundición gris, así como para estructuras particularmente finas. Oscurece la martensita, el ataque se prolonga desde 10 segundos hasta unos cuantos minutos, si se desea un ataque más lento, se sustituye el alcohol etílico por el amílico.

Acido nítrico (nital)
4 cm3 de ácido nítrico concentrado (d= 1,4)
100 cm3, de alcohol etílico al 95%
Resalta los diversos constituyentes estructurales y el contorno de los granos de los aceros no aleados. Pone en manifiesto las uniones de los granos de ferrita, la perlita se ennegrece y la cementita se mantiene blanca.

Ácido fosfórico
40 cm3, de ácido fosfórico a 75%
60 cm3, de agua destilada.
Pone en evidencia la micro estructura del aluminio en las aleaciones Al-Mg y las Al-Zn-Mg elaboradas plásticamente. Se aplica por inmersión durante 3 a 10 minutos.
Para el ataque del cobre
Solución al 10% de persulfato amónico
Solución al 3% de agua oxigenada y amoníaco concentrado.
Solución al 10% de ácido nítrico.
Para bronces y latones
50 cm3, de ácido clorhídrico;
5 g. de percloruro de hierro
100 cm3, de agua destilada.
Reactivo al ácido nítrico
50 cm3, de ácido nítrico
25 cm3, de ácido acético glacial
25 cm3, de agua destilada.
Apropiado para el bronce de aluminio

El microscopio metalográfico está formado por: Banco óptico, aparato para la iluminación de la probeta, objetivo, ocular para la observación directa y cámara fotográfica; el principio de funcionamiento es análogo al microscopio de Le Chatelier, con un arreglo tal que permite observar la luz reflejada por la superficie opaca del metal.
El aumento total (X) del microscopio, está dado por el producto del aumento del ocular y el aumento del objetivo.
En el microscopio Neophot-2:
Aumento del objetivo: 8X 1OX 12.5X 16X 20X
Aumento del ocular: 2.5X 6.3X 12.5X 16X 25X 40X 50X 100X
Pulir y atacar probetas de:
-Acero 1020 y 1060 AISI bonificado.
-Fundición de hierro gris, nodular y blanco.
-Aluminio y bronce.

JAVIER ERNESTO dijo...

Rayos X
Radiografía tomada por Wilhelm Röntgen en 1896.
La denominación rayos X designa a una radiación electromagnética, invisible, capaz de atravesar cuerpos opacos y de impresionar las películas fotográficas. La longitud de onda está entre 10 a 0.1 nanómetros, correspondiendo a frecuencias en el rango de 30 a 3.000 PHz (de 50 a 5,000 veces la frecuencia de la luz visible).

Descubrimiento
El descubridor de estos tipos de rayos le colocó el nombre de "X" porque no sabia que eran, ni como eran provocados, y porque esto significa "desconocido", dándole mayor sentido que cualquier otro nombre, por lo que durante muchos años después se decidió que conservara ese nombre.
La noticia del descubrimiento de los rayos "x" se divulgó con increíble rapidez en el mundo. Roentgen fue objeto de múltiples reconocimientos, el emperador Guillermo II de Alemania le concedió la Orden de la Corona, fue honrado con la medalla Rumford de la Real Sociedad de Londres en 1896, con la medalla Barnard de la Universidad de Columbia y con el premio Nobel de Física en 1901.
El descubrimiento de los rayos "X", fue el producto de la investigación, experimentación y no por accidente como algunos autores afirman; W.C. Roentgen, hombre de ciencia, agudo observador, investiga los detalles más nimios, por eso tuvo éxito donde los demás fracasaron. Este genio no quiso patentar su descubrimiento cuando Thomas Alva Edison se lo propuso, manifestando que lo legaba para beneficio de la humanidad.
Definición:

Los rayos X son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente.
Los rayos X también pueden ser utilizados para explorar la estructura de la materia cristalina mediante experimentos de difracción de rayos X por ser su longitud de onda similar a la distancia entre los átomos de la red cristalina. La difracción de rayos X es una de las herramientas más útiles en el campo de la cristalografía.
Producción de rayos X

Los rayos X son producto de la desaceleración rápida de electrones muy energéticos (del orden 1000eV) al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X (a partir de cierta longitud de onda mínima). Sin embargo experimentalmente, además de este espectro continuo, se encuentran líneas características para cada material. Estos espectros —continuo y característico— se estudiarán más en detalle a continuación.

La producción de rayos X se da en un tubo de rayos X que puede variar dependiendo de la fuente de electrones y puede ser de dos clases: tubos con filamento o tubos con gas.
El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento caliente de tungsteno y el ánodo es un bloque de cobre en el cual esta inmerso el blanco. El ánodo es refrigerado continuamente mediante la circulación de agua, pues la energía de los electrones al ser golpeados con el blanco, es transformada en energía térmica en un gran porcentaje. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y producto de la colisión los rayos X son generados. Finalmente el tubo de rayos X posee una ventana la cual es transparente a este tipo de radiación elaborada en berilio, aluminio o mica.

El tubo con gas se encuentra a una presión de aproximadamente 0.01 mmHg y es controlada mediante una válvula; posee un cátodo de aluminio cóncavo, el cual permite enfocar los electrones y un ánodo. Las partículas ionizadas de nitrógeno y oxígeno, presentes en el tubo, son atraídas hacia el cátodo y ánodo. Los iones positivos son atraídos hacia el cátodo e inyectan electrones a este. Posteriormente los electrones son acelerados hacia el ánodo (que contiene al blanco) a altas energías para luego producir rayos X. El mecanismo de refrigeración y la ventana son los mismos que se encuentran en el tubo con filamento.
Interacción de los rayos X con la materia
Cuando los rayos X interactúan con la materia, estos pueden ser en parte absorbidos y en parte transmitidos. Esta característica es aprovechada en medicina al realizar radiografías.
La absorción de rayos X va a depender de la distancia que estos atraviesan y de su intensidad. Esta dada por
Ix = Ioe( − μ / ρ)ρx
μ / ρ, es característico del material e independiente del estado físico. \mu el coeficiente lineal de absorción y rho la densidad del material.
Si un material esta compuesto de diferentes elementos, el coeficiente de absorción másico μ / ρ es aditivo, de tal manera que donde w significa la fracción del elemento constituyente.
Si alguien pone el grafico de los picos caracteristicos va a estar bueno.
Rayos gamma

La radiación gamma (γ) es un tipo de radiación electromagnética producida generalmente por elementos radioactivos o procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia.
Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.
La energía de este tipo de radiación se mide en megaelectronvoltios (MeV). Un Mev corresponde a fotones gamma de longitudes de onda inferiores a 10 - 11 m o frecuencias superiores a 1019 Hz.
Los rayos gamma se producen en la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos. Los rayos gamma se diferencian de los rayos X en su origen, debido a que estos últimos se producen a nivel extranuclear, por fenómenos de frenado electrónico. Generalmente asociada con la energía nuclear y los reactores nucleares, la radiactividad se encuentra en nuestro entorno natural, desde los rayos cósmicos, que nos bombardean desde el sol y las galaxias de fuera de nuestro Sistema Solar, hasta algunos isótopos radiactivos que forman parte de nuestro entorno natural.

En general, los rayos gamma producidos en el espacio no llegan a la superficie de la Tierra, pues son absorbidos en la alta atmósfera. Para observar el universo en estas frecuencias, es necesario utilizar globos de gran altitud u observatorios espaciales. En ambos casos se utiliza el efecto Compton para detectar los rayos gamma. Estos rayos gamma se producen en fenómenos astrofísicos de alta energía como explosiones de supernovas o núcleos de galaxias activas. En astrofísica se denominan GRB (Gamma Ray Bursts) a fuentes de rayos gamma que duran unos segundos o unas pocas horas siendo sucedidos por un brillo decreciente de la fuente en rayos X durante algunos días. Ocurren en posiciones aleatorias del cielo y su origen permanece todavía bajo discusión científica. En todo caso parecen constituir los fenómenos más energéticos del Universo.
La excepción son los rayos gamma de energía por encima de unos miles de MeV (o sea, gigaelectronvoltios o GeV), que, al incidir en la atmósfera, producen miles de partículas (cascada atmosférica extensa) que, como viajan a velocidades más elevadas que la luz en el aire, generan radiación de Cherenkov. Esta radiación es detectada en la superficie de la Tierra mediante un tipo de telescopio llamado telescopio Cherenkov.

Clasificación general de los Materiales

Los materiales son las sustancias que componen cualquier cosa o producto. Desde el comienzo de la civilización, los materiales junto con la energía han sido utilizados por el hombre para mejorar su nivel de vida. Como los productos están fabricados a base de materiales, estos se encuentran en cualquier parte alrededor nuestro. Los mas comúnmente encontrados son madera, hormigón, ladrillo, acero, plástico, vidrio, caucho, aluminio, cobre y papel. Existen muchos mas tipos de materiales y uno solo tiene que mirar a su alrededor para darse cuenta de ello


Clasificación de los materiales

La manera más general de clasificación de los materiales es la siguiente:

a. Metálicos
• Ferrosos
• No ferrosos

b. No metálicos
• Orgánicos
• Inorgánicos

Metales Ferrosos

Los metales ferrosos como su nombre lo indica su principal componente es el hierro, sus principales características son su gran resistencia a la tracción y dureza. Las principales aleaciones se logran con el estaño, plata, platino, manganeso, vanadio y titanio.

Los principales productos representantes de los materiales metálicos son:
• Fundición de hierro
• Aceros
• Aceros inoxidables

Su temperatura de fusión va desde los 1360ºC hasta los 1541ºC y uno de sus principales problemas es la corrosión.

Metales no Ferrosos

Por lo regular tienen menor resistencia a la tracción y dureza que los metales ferrosos, sin embargo su resistencia a la corrosión es superior. Su costo es alto en comparación a los materiales ferrosos pero con el aumento de su demanda y las nuevas técnicas de extracción y refinamiento se han logrado abatir considerablemente los costos, con lo que su competitividad ha crecido notablemente en los últimos años.

Los principales metales no ferrosos utilizados en la manufactura son:
• Aluminio
• Cobre
• Magnesio
• Níquel
• Plomo
• Titanio
• Zinc

Los metales no ferrosos son utilizados en la manufactura como elementos complementarios de los metales ferrosos, también son muy útiles como materiales puros o aleados los que por sus propiedades físicas y de ingeniería cubren determinadas exigencias o condiciones de trabajo, por ejemplo el bronce (cobre, plomo, estaño) y el latón (cobre zinc).

Materiales no Metálicos
a. Materiales de origen orgánico
b. Materiales de origen inorgánico


Materiales orgánicos
Son así considerados cuando contienen células de vegetales o animales. Estos materiales pueden usualmente disolverse en líquidos orgánicos como el alcohol o los tretracloruros, no se disuelven en el agua y no soportan altas temperaturas.






Algunos de los representantes de este grupo son:
• Plásticos
• Productos del petróleo
• Madera
• Papel
• Hule
• Piel

Materiales de origen inorgánico
Son todos aquellos que no proceden de células animales o vegetales o relacionadas con el carbón. Por lo regular se pueden disolver en el agua y en general resisten el calor mejor que las sustancias orgánicas.

Algunos de los materiales inorgánicos más utilizados en la manufactura son:
• Los minerales
• El cemento
• La cerámica
• El vidrio
• El grafito (carbón mineral)


Tecnología de materiales
La tecnología de materiales es el estudio y puesta en práctica de técnicas de análisis, estudios físicos y desarrollo de materiales.
Propiedades mecánicas
• Dureza: es la resistencia de un cuerpo a ser rayado por otro. Un cuerpo es más duro que otro ya que sus moléculas están muy unidas y tensas como para dejarse penetrar. La propiedad opuesta a duro es blando. El diamante es duro porque es difícil de rayar.
Resistencia se refiere a la propiedad que presentan los materiales para soportar las diversas fuerzas a que pueden ser sometidos.
• Blando: es la poca resistencia que ofrece un cuerpo a ser rayado por otro, un cuerpo es tanto más blando cuando la fuerza necesaria para rayarlo es tanto más pequeña, la propiedad opuesta a blando es duro, el yeso es blando porque se raya con facilidad.
• Tenacidad: la tenacidad es la resistencia que opone un cuerpo a romperse por un impacto, un cuerpo es tanto más tenaz cuando el choque necesario para romperlo tenga que ser más fuerte. La propiedad opuesta a tenaz es frágil, ejemplo, la madera es tenaz, dado que es necesario un choque muy violento para romperla.
• Fragilidad: es la facilidad con la que un cuerpo se rompe por un choque, propiedad opuesta a tenacidad, el vidrio es frágil porque con un pequeño golpe se rompe.
• Elasticidad: la elasticidad es la capacidad de los cuerpos de recuperar su forma original tras una deformación, un cuerpo elástico se deforma cuando se ejerce una fuerza sobre él, pero cuando esa fuerza desaparece, el cuerpo recupera su forma original, la propiedad opuesta a elasticidad es plasticidad. La goma es elástica, si se ejerce una fuerza, por ejemplo sobre una pelota de goma, esta se deforma, cuando deja de ejercer la fuerza la pelota recupera su forma original.
• Plasticidad: la plasticidad es la propiedad del cuerpo por la que una deformación se hace permanente, si sobre un cuerpo plástico ejercemos una fuerza este se deforma, cuando la fuerza desaparece la deformación permanece, la propiedad opuesta a plasticidad es elasticidad. Un ejemplo es la arcilla fresca, si se aplica una fuerza sobre ella se deforma, cuando deja de ejercer la fuerza la deformación permanece.
• Maleabilidad: es la propiedad de la materia, que junto a la ductilidad presentan los cuerpos a ser labrados por deformación. Se diferencia de aquélla en que mientras la ductilidad se refiere a la obtención de hilos, la maleabilidad permite la obtención de delgadas láminas de material sin que éste se rompa, teniendo en común que no existe ningún método para cuantificarlas. El elemento conocido más maleable hasta la fecha es el oro, que se puede malear hasta láminas de diezmilésima de milímetro de espesor. También presenta esta característica, en menor medida, el aluminio, habiéndose popularizado el papel de aluminio como envoltorio conservante para alimentos, con posibles efectos adversos para la salud, así como en la fabricación de tetra-brick.
• Ductilidad: La ductilidad es la propiedad que presentan algunos metales y aleaciones cuando, bajo la acción de una fuerza, pueden estirarse sin romperse permitiendo obtener alambres o hilos. A los metales que presentan esta propiedad se les denomina dúctiles. En el ámbito de la metalurgia se entiende por metal dúctil aquel que sufre grandes deformaciones antes de romperse, siendo el opuesto al metal frágil, que se rompe sin apenas deformación.
No debe confundirse dúctil con blando, ya que la ductilidad es una propiedad que se manifiesta una vez que el material está soportando una fuerza considerable; esto es, mientras la carga sea pequeña, la deformación también lo será, pero alcanzado cierto punto el material cede, deformándose en mucha mayor medida de lo que lo había hecho hasta entonces pero sin llegar a romperse. Así mismo tampoco debemos confundir entre duro y tenaz, este último es la energía acumulada al aplicarse una fuerza, al contrario que la dureza que es la resistencia a la deformación en general.
En un ensayo de tracción, los materiales dúctiles presentan una fase de fluencia caracterizada por una gran deformación sin apenas incremento de la carga.
Inspección por líquidos penetrantes
La inspección por líquidos penetrantes es un tipo de ensayo no destructivo que se utiliza para detectar e identificar discontinuidades presentes en la superficie de los materiales examinados. Generalmente se emplea en aleaciones no ferrosas, aunque también se puede utilizar para la inspección de materiales ferrosos cuando la inspección por partículas magnéticas es difícil de aplicar. En algunos casos se puede utilizar en materiales no metálicos. El procedimiento consiste en aplicar un líquido coloreado o fluorescente a la superficie en estudio, el cual penetra en cualquier discontinuidad que pudiera existir debido al fenómeno de capilaridad. Después de un determinado tiempo se remueve el exceso de líquido y se aplica un revelador, el cual absorbe el líquido que ha penetrado en las discontinuidades y sobre la capa del revelador se delinea el contorno de éstas.
Las aplicaciones de esta técnica son amplias, y van dese la inspección de piezas críticas como son los componentes aeronáuticos hasta los cerámicos como las vajillas de uso doméstico. Se pueden inspeccionar materiales metálicos, cerámicos vidriados, plásticos, porcelanas, recubrimientos electroquímicos, entre otros. Una de las desventajas que presenta este método es que sólo es aplicable a defectos superficiales y a materiales no porosos.